viewONE

’ DAEJA

image systems
Applet-JavaScript
Manual

; J
JAVA

Version 2.1

© Dacja Image Systems. All Rights Reserved.

Email: info@dacja.com
Web site: http://www.daeja.com

DAEJA IMAGE SYSTEMS

Contents

Introduction

The Applet user interface

Installing viewONE
Applet JavaScript 10
openFile(filename, page) 11
closeDocument() 11
initializePageArray(numPages) 12
setPageArray(filename, page) 12
openPageArray(page) 12
initializePageAndThumbsArray(numPages) 13
setPageArray(filename, page) 13
setThumbsArray(filename, page) 13
openPageArray(page) 13
openList(listFile, page) 14
reloadList() 14
openDoc(index) 14
nextDoc() prevDoc() 15
firstDoc() 15
lastDoc() 15
getDocIndex() 15
getNumDocs() 15
initializeLabels(numLabels) 15
setLabel(pageLabel, pageLabelColor, thumbLabel, thumbLabelColor, labelNum) 15
useLabels() 15
clearLabels() 15
getNumPages() 16
setPage(page) 16
getPage() 16
nextPage() 16
previousPage() 16
setHyperlink(url, dblClick) 17

DAEJA IMAGE SYSTEMS

clearHyperlink()

printPage()

printDocument()

printRange()

printSelected()

printVisible()

setPrintDialog(true/false)

isPrintDialog()

setPrintCopies(integer)

setPrinter(string)

setPrintHeader(headerString)

setPrintAutoRotate (true/false)
selectPage(int pageNumber)

clearSelections()

invert()

isInverted()

setEnhance(true/false)

isEnhance(true/false)

setRotation(angle)

getRotation()

rotateClockwise()

rotateCounterclockwise()

rotatel180()

setFlip(mode)

getFlip()

setScale(scale)

getScale()

setView(view)

getView()

getStates()

setStates(string states)

setScrollbars(true/false)

isScrollbars()

setDraggingEnabled(true/false)

17
17
17
18
18
18
18
19
19
19
20
21
21
21
21
22
22
22
22
22
23
23
24
24
24
25
25
26
26
27
27
27
27
28

DAEJA IMAGE SYSTEMS

isDraggingEnabled()

zoomlIn()

zoomQOut()

zoom100()

setAreaZoom(true/false)

isAreaZoom()

zoomArea(x, y, width, height, highlight, seconds)
setMagnifier(true/false)

setMagnifierInternal(true/false)
isMagnifier()

setMagFactor()

getMagFactor()

setMagBounds(int x, int y, int width, int height)

setStatusBar(true/false)

isStatusBar()

setFileButtons(true/false)

isFileButtons()

setlmageButtons(true/false)

isImageButtons()

setPrintButtons(true/false)

isPrintButtons()

setInvertButtons(true/false)

isInvertButtons()

setNewWindow Visible(true/false)

isNewWindow Visible()

setNewWindowButtons(true/false)

isNewWindowButtons()

setViewButtons(true/false)

isViewButtons()

setAllButtons(true/false)

isAlIButtons()

setPageButtons(true/false)

isPageButtons()

setFileKeys(true/false)

28
28
28
28
29
29
29
30
30
30
30
30
31
31
31
31
31
32
32
32
32
33
33
33
33
34
34
34
35
35
35
35
36
36

DAEJA IMAGE SYSTEMS

isFileKeys()

setlmageKeys(true/false)

isImageKeys()

setPrintKeys(true/false)

isPrintKeys()

setViewKeys(true/false)

isViewKeys()

setPageKeys(true/false)

isPageKeys()
setSelectKeys(true/false)

isSelectKeys()

setAllKeys(true/false)

isAllKeys()

setFileMenus(true/false)

IsFileMenus()

setViewMenus(true/false)

IsViewMenus()

setlmageMenus(true/false)

IsImageMenus()

setPrintMenus(true/false)

IsPrintMenus()

setPageMenus(true/false)

IsPageMenus()

setSelectMenus(true/false)

IsSelectMenus()

setPreferenceMenus(true/false)

IsPreferenceMenus()

setAllMenus(true/false)

isAllMenus()

setBrightness(percent)

resetBrightness()

getBrightness()

setContrast(percent)

resetContrast()

36
37
37
37
38
38
38
39
39
39
39
40
40
40
41
41
41
42
42
43
43
44
44
45
45
46
46
46
47
47
47
47
48
48

DAEJA IMAGE SYSTEMS

getContrast()

setLuminance(percent)

resetLuminance()

getLuminance()

getCacheFile()

getImageWidth()

getImageHeight()

getXResolution()

getYResolution()
getVersion()

isReady()

setTimeout(seconds)

getTimeout()

stopTimeout()

isTimedOut()

getTimeLeft()

wakeUp()

getSelection()

Event Handling

EventHandler

Testing your Event Handler

The MayScript tag

Applet security

The Java Plugin

48
49
49
49
50
50
50
50
51
51
51
53
53
53
53
54
54
54
55
55
59
59
60
61

2
JAVA

Introduction

viewONE is a Java applet that extends your web browser so that you can view,
zoom, magnify, scroll, pan, rotate and print your images and image documents
quickly and easily.

This document is the applet JavaScript manual and assumes a basic knowledge
of JavaScript.

Please note; JavaScript support for applets is dependent on the browser and the
JVM (Java Virtual Machine). The Netscape browser with Netscape’s JVM and
Internet Explorer with Microsoft's JVM currently support JavaScript usage with
applets.

For sample JavaScript source code see an html page named “script.ntm” present
in the ‘java’ folder of the ‘mixed’ web demo (version 1.18 or later). Demos are
available from our web site at www.daeja.com/pub/start/downloads.html

For further information about viewONE please consult the following documents...
e Applet User Manual
e Applet HTML Manual
e Applet Annotations User Manual
e Applet Annotations Configuration Manual

e or our web site at www.daeja.com

The Applet user interface

Zoom Area, Zoom In, Zoom Out,
Magnify, Zoom 100%, Fit to Width,
Fit to Height, Best Fit, Rotate
Clockwise, Rotate

New window

Vertical
scrollbar

Image Area

Drag mouse
to pan image

X Counterclockwise, Rotate 180, Flip
Print Page, Document Horizontally, Flip Vertically, Invert
and Page Range and Help
File
Open,
Close and 4
Save - Fh G 4R Re D08 OO 00 A 2 &)
Scroll to
First, \
Previous, —
Next and T
Last Page
K|1 i >|H| w{F‘agﬂoM... ; S >|ute||,|ur|e
’E ﬁEE m 1 E CH ‘& \ /' C)
\ Horizontal scrollbar
Enhance mode
View Fullpage, Adjust Brightness
Thumbnails,
Two Pages,
Thumbs-left, Help and progress
Thumbs bottom, captions appear here
Thumbs right and
Thumbs top

Installing viewONE

HTML: To install viewONE on your web site copy all files found in the “v1files” directory
of the downloaded demo, to your web server, preferably in a separate directory
similarly named.

Then setup a simple web page to use the applet by adding the following lines to
the web page HTML...

<APPLET CODEBASE = “”
ARCHIVE = ‘ji.jar

CODE = “ji.applet.jiApplet.class”
NAME = “viewONE”

WIDTH = “100%”

HEIGHT = “97%”

HSPACE = “0”

VSPACE = “0”

ALIGN = “middle”>

<PARAM NAME="cabBase” VALUE="ji.cab”>
</APPLET>

You must change the ‘codebase’ if the ji.jar, ji.cab and other files (*.v1) are not
located in the same directory as the HTML file containing the code.

The codebase parameter specifies the location of the ji.jar, ji.cab and other files
relative to the location of the HTML page. So in this case it specifies the ‘current
directory’ which is “.”

(Note: PARAM NAME="cabbase” is required for Microsoft Explorer users).

You can include optional tags for selecting documents to view and for setting
various parameters described in our HTML manual or you can use any of the
JavaScript methods described in this manual.

Note: The use of JavaScript requires the browser you are using to support
“LiveConnect”. This currently includes Netscape browsers 4.06+ across most
platforms and Internet Explorer 4.01+ (except for Macintosh Internet Explorer 4.5).

Applet JavaScript

The JavaScript examples in this manual do not refer to their use in any particular
context. The examples could be used within functions of a JavaScript program or
directly as event handlers to buttons, hyper-links etc. Our web site illustrates such
uses; alternatively refer to an appropriate JavaScript guide.

Filenames and hyperlink addresses are expressed using the Internet URL address
format (Uniform Resource Locator), e.g. “http:/mysite/myimage.tif”. If any part of
the address before “myimage.tif” is not included then the applet will assume a
base address that is the same as the applet location (the codebase).

With the exception of filenames and hyperlink addresses, all parameters are case
insensitive.

*The MayScript tag and MRJ (Apple Mac users)
The MayScript tag is ignored by Apple’s Macintosh Run-time Java (MRJ).

This means that JavaScript cannot call Java methods (i.e. viewONE methods) and
that Java cannot call JavaScript methods. This is an unavoidable issue at present
until Apple implement ‘LiveConnect” in their browser support for Java.

At the time of writing this document, this was still a problem for IE5 and
Netscape4.x users. However, Netscape 6 looks promising and so may resolve this
issue when it is finally released.

10

Method:

Method:

openFile(filename, page)

E.g. viewONE.openFile(“myimages.tif’, 1);

Specifies the filename and initial page of the document to be viewed.

This filename can specify either the filename relative to the code base (as above)
or the full URL. The code base is specified in the HTML code for the applet (see
previous example). An example of a full URL is as follows...

E.g. viewONE.openFile(“http://mysite/myimages.tif’, 1);

closeDocument()

E.g. viewONE.closeDocument();

Closes an open document.

11

Method initializePageArray(numPages)
Group: setPageArray(filename, page)
openPageArray(page)
E.g.
viewONE.initializePageArray(3);
viewONE.setPageArray(“page1.tif”, 0);
viewONE.setPageArray(“page2.tif”, 1);
viewONE.setPageArray(“page3.tif”, 2);
viewONE.openPageArray(1);
This method group specifies the number files (pages) in a list, then specifies each
file (each one representing a successive page of the document), then opens the

‘assembled’ document at page 1. Note the page array begins at array element
zero.

12

Method
Group:

initializePageAndThumbsArray(humPages)

setPageArray(filename, page)

setThumbsArray(filename, page)

openPageArray(page)

E.g.

viewONE.initializePageAndThumbsArray(3);

viewONE.setPageArray(“page1.tif”, 0);

viewONE.setThumbsArray(“page1-t.tif’, 0);

viewONE.setPageArray(“page2.tif”, 1);

viewONE.setThumbsArray(“page2-t.tif’, 1);

viewONE.setPageArray(“page3.tif’, 2);

viewONE.setThumbsArray(“page3-t.tif”, 2);

viewONE.openPageArray(1);

These methods are similar to the previous. They specify the number files (pages)
in a list, and then specify a separate file for each page and a thumbnail file for that
page. The final method then opens the “assembled” document at page 1. Note,
the page array begins at array element zero.

In some instances, it may be advantageous to have separate files for the

thumbnails to assist in browsing of thumbnails (smaller files are quicker to
download and view).

13

Method:

Method:

Method:

openList(listFile, page)

E.g. viewONE.openList(“mylist/list.txt”, 1);

This method offers and alternative option to the page array methods above. It
allows a file to be supplied which contains a list of pages.

This is useful for very large documents because it removes the need to deal with
an array in JavaScript.

It can also be used to keep the HTML constant, by changing the source list instead
of changing the HTML between different documents.

(Separate files for thumbnails are not available for this option).

reloadList()

E.g. viewONE.reloadList()

This method forces the list used with the openList() method to be reloaded and the
document to be re-opened. It will reload the list file from source (i.e. the web
server) each time, so if it has changed then the changes will be picked up.

openDoc(index)

E.g. viewONE.openDoc(2)

This method applies only when the “doc<N>" HTML parameter is used (see HTML
manual). The value of “index” represents the associated “doc<N>" parameter.
Therefore, the above example will cause viewONE to open the second document
in the list (i.e., that specified by the “doc2” HTML parameter).

14

Method:

Method
Group:

nextDoc()
prevDoc()
firstDoc()
lastDoc()
getDocindex()
getNumbDocs()

These are convenience methods that can be used in place of the “openDoc”
method described above.

initializeLabels(humLabels)

setLabel(pageLabel, pageLabelColor, thumbLabel, thumbLabelColor, labelNum)
uselLabels()

clearLabels()

E.g.

viewONE.initializeLabels(3);

viewONE.setLabel(“Page label 17, null, “thumb 17, null, 0);
viewONE.setLabel(“Page label 27, null, “thumb 27, null, 1);
viewONE.setLabel(“Page label 37, “223,223,255”, “thumb 3", “255,223,223", 2);
viewONE.uselabels();

viewONE.openFile(“mydocument.tif”, 1);

This method group specifies the number files (labels) in a list, then specifies each
label. Each one representing a successive page of the document and specifying
the label to be displayed for the full-page area and the corresponding thumbnail. It

then sets the labels in use by calling the uselLabels() method.

Label colors are specified using the standard RGB values and where no color is
specified (i.e. null) then the default color is white.

Notes:
The label array begins at array element zero.

Labels will remain visible until the document is closed or the clearLabels() method
is called.

If you do not want to define a label for either the full-page area or a thumbnail then
specify the label as a null string e.g...

15

viewONE.setLabel(null, null, “thumb 17, null, 0);

This example sets up a label for the thumbnail for the first page.

Method: getNumPages()

E.g. var numPages = viewONE.getNumPages();

Gets the number of pages in the current document (an integer).

Method: setPage(page)

E.g. viewONE.setPage(2);

Sets the current page number (an integer).

Method: getPage()

E.g. var page = viewONE.getPage();

Returns the current page number as an integer.

Method: nextpage()

E.g. viewONE.nextPage();

Convenience method to view the next page (current page + 1)

Method: previousPage()

E.g. viewONE.previousPage();

Convenience method to view the previous page (current page - 1).

16

Method:

Method:

Method:

Method:

setHyperlink(url, dbiClick)

E.g. viewONE.setHyperlink(“newpage.html”, false);

or

viewONE.setHyperlink(“http:/mysite/newpage.html”, false);

Specifies a hyperlink that is activated when the user clicks on the image area. If
the dblClick parameter is ‘true’ then the hyperlink is activated only after the user

double-clicks on the image area, otherwise it requires only a single click.

The hyperlink can specify either the filename relative to the code base or the full
URL as illustrated.

clearHyperlink()
E.g. viewONE.clearHyperlink();

This method clears a hyperlink if one has previously been defined using the
setHyperlink() method.

printPage()

E.g. viewONE.printPage();

Produces a print dialog to allow the user to print the current page.

printDocument()

E.g. viewONE.printDocument();

Produces a print dialog to allow the user to print the current document (available
for multi-page documents only).

17

Method:

Method:

Method:

Method:

printRange()

E.g. viewONE.printRange();

Produces a range dialog followed by a print dialog to allow the user to print a range
of pages in a document (available for multi-page documents only).

printSelected()

E.g. viewONE.printSelected();
Produces a print dialog to print pages selected using the page-select menu
(available for multi-page documents only). Can be used with the

“selectPage(pageNumber)” and “clearSelections()” methods to print any page or
group of pages within a document.

printVisible()

E.g. viewONE.printVisible();

Produces a print dialog to print the image display (visible).

setPrintDialog(true/false)

E.g. viewONE.setPrintDialog(false);

This method applies only when the print-accelerator is used. When this parameter
is set to false, printing will take place without showing the standard print-dialog. If
the user has not printed using viewONE with the accelerator previously, then the
users’ default printer will be used. Otherwise, the last printer used by the user (with
viewONE print accelerator) will be used.

18

Method: isPrintDialog()

E.g. var dialog = viewONE.isPrintDialog();

Returns a Boolean ‘True’ if the print dialog is enabled, ‘False’ if it is not.

Method: setPrintCopies(integer)

E.g. viewONE.setPrintCopies(2);

This method is effective only when the print dialog is disabled (by calling
setPrintDialog(false) or using the equivalent HTML tag). This method sets the
number of copies that will be printed when printing a page, pages or the document.

Method: setPrinter(string)

E.g. viewONE.setPrinter(“myprinter”);

This method is effective only when the print dialog is disabled (by calling
setPrintDialog(false) or using the equivalent HTML tag). This method sets the
viewONE default printer to the one specified as the parameter. The parameter
must be the ‘name’ (or unique part thereof) as seen by the users printer settings.
The printers’ default settings will be used for each print (e.g. orientation, resolution
etc).

19

Method:

setPrintHeader(headerString)

E.g. viewONE.setPrintHeader(“$page # $of ##”)

Printouts can include custom text at the top of each page. By default this text is set

to the page number followed by the number of pages in the document. The

following options are available...

“false” : This value will disable print headers

“any text” : This is the text that will appear at the top of each printed page.

For exampile, it could be your own copyright for the documents
being viewed or some other informational text.

“formatted text” : The text can include some limited formatted elements as follows:
$page : This will print the word “page” in the appropriate translation
$of : Similarly for the word “of”
$pages: Similarly for the word “pages”

: This will print the page number of the page being printed
#i# : This will print the number of pages in the document

An example...

“Spage # $of ## © Copyright blah 2000”

Note 1: The default value is: “($page # $of ##)”

Note 2: Print headers are available for Internet Explorer 4.01+, Netscape 4.06+
and the Java Plugin 1.3 (The Java Plugin 1.2.2 does not offer sufficient
functionality to permit print headers and so they will not be seen if using this
version of the plugin).

20

Method: setPrintAutoRotate (true/false)

E.g. viewONE.setPrintAutoRotate(true)

This parameter is only available when used with the print accelerator and only
applicable when the tag multiPrintNum is set to more than 1.

If this parameter is set to true, then viewONE will attempt to rotate images

automatically prior to printing so that as many images can be printed (vertically) on
a printed page as possible. The default value for this tag is false.

Method: selectPage(int pageNumber)

E.g. viewONE.selectPage(4);

Toggles the select property on the page in a document indicated by the
“pageNumber” parameter (available for multi-page documents only).

Method: clearSelections()

E.g. viewONE.clearSelections();

Clears all page selections in the document (available for multi-page documents
only).

E.g. viewONE.invert();

Inverts the display colors (black changes to white and visa-versa). This method is
also effective on images with more than two colors. A second call to this method
will re-establish the original display colors.

If the document is closed when this method is called, the default for all pages is
modified. If the document is open when this method is called, the individual page is
modified only.

21

Method:

Method:

Method:

Method:

Method:

isinverted()

E.g. var inverted = viewONE.isInverted();

Returns a Boolean ‘True’ if the colors are inverted, ‘False’ if they are not.

setEnhance(true/false)

E.g. var viewONE.setEnhance(true);

Specifies whether a monochrome image is displayed with anti-aliasing on or off. A
value of ‘true’(default) is on and ‘false’(default) is off.

isEnhance(true/false)

E.g. var enhance = viewONE.isEnhance();

Returns a Boolean ‘True’ if enhance is on, ‘False’ if it is off.

setRotation(angle)

E.g. viewONE.setRotation(90);

Specifies the angle at which pages are displayed. Values of 90, 180, or 270 are
accepted. The default is 0.

If the document is closed when this method is called, the default for all pages is

modified. If the document is open when this method is called, the individual page is
modified only.

getRotation()

E.g. var angle = viewONE.getRotation();

Returns the angle of rotation as an integer.

22

Method:

Method:

rotateClockwise()

E.g. viewONE.rotateClockwise();
Convenience method to increase the rotation by 90 degrees.
If the document is closed when this method is called, the default for all pages is

modified. If the document is open when this method is called, the individual page is
modified only.

rotateCounterclockwise()

E.g. viewONE.rotateCounterclockwise();
Convenience method to decrease the rotation by 90 degrees.
If the document is closed when this method is called, the default for all pages is

modified. If the document is open when this method is called, the individual page is
modified only.

23

Method:

Method:

Method:

rotate180()

E.g. viewONE.rotate180();
Convenience method to rotate the document to 180 degrees.
If the document is closed when this method is called, the default for all pages is

modified. If the document is open when this method is called, the individual page is
modified only.

setFlip(mode)

E.g. viewONE.setFlip(1);

Specifies the flip mode of displayed pages. Values of 0 (none), 1 (horizontal or
mirror), 2 (vertical) or 3 (both) are accepted. The default is 0.

Flip buttons and menus are not visible to the user by default. To enable these
options for the user you must use the flipOptions HTML tag when the applet is
loaded.

If the document is closed when this method is called, the default for all pages is

modified. If the document is open when this method is called, the individual page is
modified only.

getFlip()

E.g. var angle = viewONE.getFlip();

Returns the flip mode as an integer.

Method:

Method:

setScale(scale)

E.g. viewONE.setScale(0);

Specifies the scale mode used to display a page. Acceptable integer values are:

0:

best fit

The page is scaled to fit into the window area so that the entire page is
visible.

Fit-to-window-width

The page is scaled so that the width of the page matches the width of the
window area. This may result in the visible page height exceeding the
available window height in which case a vertical scroll bar appears
automatically.

Fit-to-window-height
The page is scaled so that the height of the page matches the height of the

window area. This may result in the visible page width exceeding the
available window width in which case a horizontal scroll bar appears

getScale()

E.g. var scale = viewONE.getScale();

Returns the integer scale value.

25

Method:

Method:

setView(view)

E.g. viewONE.setView(0);

Specifies the view mode used to display pages of a document. This method is
effective only while a document is open. Acceptable integer values are:

0: Fullpage

(default): A single view of the current page is visible
1: Twopage

Two pages are visible at the same time
2: Thumbsonly

A view of the thumbnails only is visible.
3: Thumbsleft

A view of the current page with thumbnails on the left of the page.
4: Thumbsright

A view of the current page with thumbnails on the right of the page.
5: Thumbstop

A view of the current page with thumbnails at the top of the page.
6: Thumbsbottom

A view of the current page with thumbnails at the bottom of the page.
getView()

E.g. var scale = viewONE.getView();

Returns the integer view mode value.

26

Method:

Method:

Method:

Method:

getStates()
E.g. states = viewONE.getStates();
Returns a coded string to be used with setStates(). When this method is called

while a document it open, it returns a string containing information about the
current zoom, scroll and other states.

setStates(string states)
E.g. viewONE.setStates(states);

Sets the zoom, scroll and other states to the values specified by the coded string.
This method should be called before opening a document.

The getStates() and setStates() methods together permit the viewing states to be
restored when a document is closed and re-opened.

setScrollbars(true/false)

E.g. viewONE.setScrollbars(true);

Specifies whether scrollbars will appear when the image is scaled to a size larger
than the display area. A value of ‘true’ (default) indicates scrollbars are required
and ‘false’ indicates they are not. A change in this setting will be visible after the

next refresh of the display (e.g. when a page is zoomed or unzoomed or a page is
changed etc.).

isScrollbars()
E.g. var scrollbars = viewONE.isScrollbars();

Returns a Boolean value of ‘true’ if scrollbars are enabled else a value ‘false’ is
returned.

27

Method:

Method:

Method:

Method:

Method:

setDraggingEnabled(true/false)

E.g. viewONE.setDraggingEnabled(true);

Specifies whether the dragging of the image is permitted or not (using the mouse).
Dragging the image to the right pans the image to the right, dragging the image to

the left pans the image to the left etc.

A value of ‘true’ (default) indicates dragging is permitted and ‘false’ indicates that it
is not

isDraggingEnabled()
E.g. var draggingEnabled = viewONE.isDraggingEnabled();

Returns a Boolean value of ‘true’ if dragging is allowed else a value ‘false’ is
returned.

zoomin()

E.g. viewONE.zoomIn();

Applies a 25% increase in zoom. Note, at first viewONE will attempt to use the
scale modes (fit-to-width, fit-to-height and best-fit) if they are more appropriate.

The zoomln() function will increase the zoom factor only after the scale modes are
no longer suitable.

zoomOut()
E.g. viewONE.zoomOut();

Reverses the effect of zoomin().

zoom100()
E.g. viewONE.zoom100();

Zooms image to 100% (full resolution).

28

Method:

Method:

Method:

setAreaZoom(true/false)

E.g. viewONE.setAreaZoom (true);

If true, initiates the zoom-area mode. The mouse pointer changes to a cross and
the user can drag the mouse (using button one) to select an area for zooming.
When the mouse button is released the area selected will be zoomed as large as
possible whilst maintaining the image aspect within the available window area.

If the selected area is not greater than the zoom trigger size (currently 2020
pixels) then zooming will not occur. This allows the user to release the mouse if the
mode was initiated accidentally.

If false, mouse functionality returns to drag mode (to pan the image).

isAreaZoom()
E.g. var areaZoom = viewONE.isAreaZoom();

Returns a Boolean value indicating the zoom-area status.

zoomArea(x, y, width, height, highlight, seconds)
E.g. viewONE.zoomArea(400, 500, 100, 150, true, 2);

Zooms to an area starting at “x”, “y” which is “width” across and “height” high. If
“highlight” is set “true” then the area zoomed is also highlighted for a time specified
by the “seconds” parameter.

If “seconds” is greater than 0 then the highlight is visible for that time. If “seconds”
is less than or equal to 0 then the highlight will remain visible until the user clicks or
forces a refresh by scrolling, rotating, etc.

X, ¥, width, height = integers specifying image pixel values
seconds = integer specifying seconds
highlight = boolean

If the area specified is a different aspect ratio from the display area then the viewer
will attempt to fit the zoom as best it can.

29

Method: setMagpnifier(true/false)

E.g. viewONE.setMagnifier(true);

If true, displays an external magnifier window. A rectangle is visible around the
mouse pointer which highlights the area being magnified.

If false, the magnifier window is hidden.

Method: setMagpnifierinternal(true/false)
E.g. viewONE.setMagnifierInternal(true);
If true, displays a magnifier window internal to the display area.

If false, the magnifier window is hidden.

Method: isMagnifier()
E.g. var magVisible = viewONE.isMagnifier();

Returns a Boolean value indicating the magnifier visibility status.

Method: setMagFactor()
E.g. viewONE.setMagFactor(int factor);

Sets the current integer magnification factor (for magnifier window)

Method: getMagFactor()

E.g. var factor = viewONE.getMagFactor();

Returns the current integer magnification factor (for magnifier window)

30

Method:

Method:

Method:

Method:

Method:

setMagBounds(int x, int y, int width, int height)
E.g. viewONE.setMagBounds(10, 10, 300, 300);

Sets the external magnifier's window position and size.

setStatusBar(true/false)
E.g. viewONE.setStatusBar(true);

Specifies whether the statusbar is visible or not. A value of ‘true’ (default) indicates
the statusbar is visible and ‘false’ indicates that it is not.

isStatusBar()

E.g. var statusBarVisible = viewONE.isStatusBar();

Returns a Boolean value of ‘true’ if the statusbar is visible else a value ‘false’ is
returned.

setFileButtons(true/false)
E.g. viewONE.setFileButtons(true);

Specifies whether the toolbar includes file buttons. A value of ‘true’ (default)
indicates the buttons are visible and ‘false’ indicates they are not.

The file buttons are:

Open, Close, Save.

|

EEEIFEEET YRR Y Al

isFileButtons()
E.g. var buttonsVisible = viewONE.isFileButtons();

Returns a Boolean value of ‘true’ if the file buttons are visible else a value ‘false’ is
returned.

31

Method:

Method:

Method:

Method:

setimageButtons(true/false)
E.g. viewONE.setlmageButtons(true);

Specifies whether the toolbar includes image buttons. A value of ‘true’ (default)
indicates the buttons are visible and ‘false’ indicates they are not.

The image buttons are:

Zoom area, Zoom in, Zoom out, Fit to width, Fit to height, Best fit, Rotate
clockwise, Rotate counterclockwise, Rotate 180.

R I EEE R R EERERICI S Al

isimageButtons()
E.g. var buttonsVisible = viewONE.isimageButtons();

Returns a Boolean value of ‘true’ if the image buttons are visible else a value ‘false’
is returned.

setPrintButtons(true/false)
E.g. viewONE.setPrintButtons(true);

Specifies whether the toolbar includes a print button. A value of ‘true’ (default)
indicates the button is visible and ‘false’ indicates it is not.

The print button is:

|

FEEIF I EEEE YRR Al

isPrintButtons()
E.g. var buttonVisible = viewONE.isPrintButtons();

Returns a Boolean value of ‘true’ if the print button is visible else a value false’ is
returned.

32

Method:

Method:

Method:

Method:

setinvertButtons(true/false)
E.g. viewONE.setInvertButtons(true);

Specifies whether the toolbar includes an invert button. A value of ‘true’ (default)
indicates the button is visible and ‘false’ indicates it is not.

The invert button is:

l

FEERFREEEEYEEEF R £l

isinvertButtons()

E.g. var buttonVisible = viewONE isInvertButtons();

Returns a Boolean value of ‘true’ if the invert button is visible else a value ‘false’ is
returned.

setNewWindowVisible(true/false)
E.g. viewONE.setNewWindowVisible(true);

Specifies whether to make the viewONE new window visible. A value of ‘true’
makes the window visible and ‘false’ (default) makes it invisible.

isNewWindowVisible()
E.g. viewONE.setNewWindowVisible(lviewONE.isNewWindowVisible());

Returns a Boolean value of ‘true’ if the viewONE new window is visible else a
value ‘false’ is returned.

33

Method:

Method:

Method:

setNewWindowButtons(true/false)
E.g. viewONE.setNewWindowButtons(true);

Specifies whether the toolbar includes a new-window button. A value of ‘true’
(default) indicates the button is visible and ‘false’ indicates it is not.

The new-window button is:

EFEFERFREEYEYYE-FE R Y Y R &1

isNewWindowButtons()
E.g. var buttonVisible = viewONE.isNewWindowButtons();

Returns a Boolean value of ‘true’ if the new-window button is visible else a value
‘false’ is returned.

setViewButtons(true/false)
E.g. viewONE.setViewButtons(true);

Specifies whether the toolbar includes view buttons. A value of ‘true’ (default)
indicates the buttons are visible and ‘false’ indicates they are not.

The view buttons are:

Fullpage, Thumbnails, Two-page, Thumbs-left, Thumbs-bottom, Thumbs-right,
Thumbs-top.

O#Hmnod d3 8 3

Method:

Method:

Method:

Method:

isViewButtons()
E.g. var buttonsVisible = viewONE.isViewButtons();

Returns a Boolean value of ‘true’ if the view buttons are visible else a value ‘false
is returned.

setAllButtons(true/false)
E.g. viewONE.setAllButtons(true);
Specifies whether all buttons are visible or not (these are file, print, image, new-

window and view buttons). A value of ‘true’ (default) indicates the buttons are
visible and ‘false’ indicates they are not.

isAllButtons()
E.g. var buttonsVisible = viewONE.isAllButtons();

Returns a Boolean value of ‘true’ if the all buttons are visible else a value ‘false’ is
returned (these are file, print, image, new-window and view buttons)

setPageButtons(true/false)
E.g. viewONE.setPageButtons(true);

Specifies whether the toolbar includes page buttons. A value of ‘true’ (default)
indicates the buttons are visible and ‘false’ indicates they are not.

The page buttons are:

First page, previous page, next page, last page and a drag bar for page selection..

35

Method:

Method:

Method:

isPageButtons()
E.g. var buttonsVisible = viewONE.isPageButtons();

Returns a Boolean value of ‘true’ if the page buttons are visible else a value ‘false’
is returned.

setFileKeys(true/false)
E.g. viewONE.setFileKeys(true);

Specifies whether the hot keys for file operations are enabled. A value of ‘true’
(default) indicates the keys are enabled and ‘false’ indicates they are not.

The keys are as follows:

Open File @]
Open URL Shift-O
Close C
Save F

New window W
isFileKeys()

E.g. var keysEnabled = viewONE.isFileKeys ();

Returns a Boolean value of ‘true’ if the keys are enabled else a value false’ is
returned.

36

Method: setimageKeys(true/false)
E.g. viewONE.setimageKeys(true);

Specifies whether the hot keys for image operations are enabled. A value of ‘true’
(default) indicates the keys are enabled and ‘false’ indicates they are not.

The keys are as follows:

Fit to window width F9
Fit to window height F10
Fit to window F11
Zoom in Add
Zoom out Subtract
Magnifier M
Zoom to 100% Z
Zoom area A
Rotate clockwise R
Rotate counterclockwise L
Enhance E
Invert |
Method: isimageKeys()

E.g. var keysEnabled = viewONE.isimageKeys ();

Returns a Boolean value of ‘true’ if the keys are enabled else a value false’ is
returned.

Method: setPrintKeys(true/false)
E.g. viewONE.setPrintKeys(true);

Specifies whether the hot keys for print operations are enabled. A value of ‘true’
(default) indicates the keys are enabled and ‘false’ indicates they are not.

The keys are as follows:

Print page P

Print document Shift-P
Print page range Ctrl-P
Print selected pages Ctrl-Shift-P

37

Method:

Method:

Method:

isPrintKeys()
E.g. var keysEnabled = viewONE.isPrintKeys ();

Returns a Boolean value of ‘true’ if the keys are enabled else a value false’ is
returned.

setViewKeys(true/false)
E.g. viewONE.setViewKeys(true);

Specifies whether the hot keys for view operations are enabled. A value of ‘true’
(default) indicates the keys are enabled and ‘false’ indicates they are not.

The keys are as follows:

View page F2
View thumbnails F3
View two page F4
View thumbnails: Left F5
View thumbnails: Bottom F6
View thumbnails: Right F7
View thumbnails: Top F8
isViewKeys()

E.g. var keysEnabled = viewONE.isViewKeys ();

Returns a Boolean value of ‘true’ if the keys are enabled else a value false’ is
returned.

38

Method:

Method:

Method:

Method:

setPageKeys(true/false)
E.g. viewONE.setPageKeys(true);

Specifies whether the hot keys for page operations are enabled. A value of ‘true’
(default) indicates the keys are enabled and ‘false’ indicates they are not.

The keys are as follows:

Next page Page Down
Previous page Page Up
First page Home

Last page End
isPageKeys()

E.g. var keysEnabled = viewONE.isPageKeys ();

Returns a Boolean value of ‘true’ if the keys are enabled else a value false’ is
returned.

setSelectKeys(true/false)
E.g. viewONE.setSelectKeys(true);

Specifies whether the hot keys for select operations are enabled. A value of ‘true’
(default) indicates the keys are enabled and ‘false’ indicates they are not.

The keys are as follows:

Select page S
Clear Selections Shift-S
isSelectKeys()

E.g. var keysEnabled = viewONE.isSelectKeys ();

Returns a Boolean value of ‘true’ if the keys are enabled else a value false’ is
returned.

39

Method:

Method:

Method:

setAllKeys(true/false)

E.g. viewONE.setAllKeys(true);

Specifies whether the all hot keys are enabled or not. A value of ‘true’ (default)
indicates the keys are enabled and ‘false’ indicates they are not.

isAllKeys()

E.g. var keysEnabled = viewONE.isAllKeys ();

Returns a Boolean value of ‘true’ if the keys are enabled else a value false’ is

returned.

setFileMenus(true/false)

E.g. viewONE.setFileMenus(true);

Specifies whether the file pop-up menus are available (using mouse button 2/3). A
value of ‘true’ (default) indicates the menus are available and ‘false’ indicates they

are not.

The menu is as follows:

Wi

g

Aythyigat
Bt

Fage

gt ol

Pl @b ar @

Cpen url

Close

Tew window

Save page

40

Method: IsFileMenus()
E.g. var menusEnabled = viewONE.isFileMenus();

Returns a Boolean value of ‘true’ if the menus are enabled else a value ‘false’ is
returned.

Method: setViewMenus(true/false)
E.g. viewONE.setViewMenus(true);
Specifies whether the view pop-up menus are available (using mouse button 2/3).
A value of ‘true’ (default) indicates the menus are available and false’ indicates
they are not.

The menu is as follows:

i '

View v \iew page

View thumbnails

View two pages

Vigw thumbnails @ left

Pirit ¥ Wiew thumbnails : botkom
- g iew thurbnails ; right
‘iew thumbnails : top

Sl .

Cligibvar d ’

Bt it @ @i L4

Hilp: r

Method: IsViewMenus()

E.g. var menusEnabled = viewONE.isViewMenus();

Returns a Boolean value of ‘true’ if the menus are enabled else a value ‘false’ is
returned.

41

Method: setimageMenus(true/false)
E.g. viewONE.setimageMenus(true);
Specifies whether the image pop-up menus are available (using mouse button
2/3). A value of ‘true’ (default) indicates the menus are available and ‘false’
indicates they are not.

The menu is as follows:

File .

i *

Image 4 Fit o window width
Fit to window height

Aythat L
Fit to window

Bt .
Zoam in

Fage ¥ Zoom out

; . s Zoombo 100%
Z00m area

1l df L
Magnifier

et i e *
Rotate clockwise

el ¥ Rotate articlockwise
Foktate 180 degrees
Mirrar
Flip
Change enhance mode
Irvverk

Method: IsimageMenus()

E.g. var menusEnabled = viewONE.isImageMenus();

Returns a Boolean value of ‘true’ if the menus are enabled else a value ‘false’ is
returned.

42

Method: setPrintMenus(true/false)
E.g. viewONE.setPrintMenus(true);
Specifies whether the print pop-up menus are available (using mouse button 2/3).
A value of ‘true’ (default) indicates the menus are available and ‘false’ indicates
they are not.

The menu is as follows:

F)y ¥ Prinkt Page Range
S hinm ¥ Print Selected Pages
lisbmar ¥ Print Document
Fv il it T ¥ Print Yisible
Print Transformed
el L :
Method: IsPrintMenus()

E.g. var menusEnabled = viewONE.isPrintMenus();

Returns a Boolean value of ‘true’ if the menus are enabled else a value ‘false’ is
returned.

43

Method: setPageMenus(true/false)
E.g. viewONE.setPageMenus(true);
Specifies whether the page pop-up menus are available (using mouse button 2/3).
A value of ‘true’ (default) indicates the menus are available and ‘false’ indicates
they are not.

The menu is as follows:

File "
i .
g »
Bt L
Bt L]

Prewvious page

St L
a ’ » First page
Last page
Firaf mrmri me .
el .
Method: IsPageMenus()

E.g. var menusEnabled = viewONE.isPageMenus();

Returns a Boolean value of ‘true’ if the menus are enabled else a value ‘false’ is
returned.

Method: setSelectMenus(true/false)
E.g. viewONE.setSelectMenus(true);
Specifies whether the select pop-up menus are available (using mouse button
2/3). A value of ‘true’ (default) indicates the menus are available and ‘false’
indicates they are not.

The menu is as follows:

File o
i "
T .
Buthiiath L
it v

Selection v Select page

Clear selections

ik d L

vl mrar s *

il »
Method: IsSelectMenus()

E.g. var menusEnabled = viewONE.isSelectMenus();

Returns a Boolean value of ‘true’ if the menus are enabled else a value ‘false’ is
returned.

45

Method:
setPreferenceMenus(true/false)

E.g. viewONE.setPreferenceMenus(true);

Specifies whether the preference pop-up menus are available (using mouse
button 2/3). A value of ‘true’ (default) indicates the menus are available and false’
indicates they are not.

The menu is as follows:

File .
W .
IR "
Buthi st L
Bvimt ®
Fange L3
St .

Preferences Thumbnails - larger

Thurmbnails - smaller

Thumbnails - reset

Method: IsPreferenceMenus()
E.g. var menusEnabled = viewONE.isPreferenceMenus();

Returns a Boolean value of ‘true’ if the menus are enabled else a value ‘false’ is
returned.

Method: setAllMenus(true/false)
E.g. viewONE.setAllMenus(true);

Specifies whether the all pop-up menus are available. A value of ‘true’ (default)
indicates the menus are available and ‘false’ indicates they are not.

46

Method:

Method:

Method:

Method:

isAllMenus()
E.g. var menusEnabled = viewONE.isAllMenus();

Returns a Boolean value of ‘true’ if the menus are enabled else a value ‘false’ is
returned.

menus are available and ‘false’ indicates they are not.

setBrightness(percent)

E.g. viewONE.setBrighness(60);

This method sets the brightness of the displayed. The value represents a
percentage from 0-100, with 50 being the default value. 0 = minimum brightness
(dark) and 100 = maximum brightness (light).

If the document is closed when this method is called, the default for all pages is

modified. If the document is open when this method is called, the individual page is
modified only.

resetBrightness()

E.g. viewONE.resetBrighness();

This method resets the brightness level to 50% (the default value).

If the document is closed when this method is called, the default for all pages is

modified. If the document is open when this method is called, the individual page is
modified only.

getBrightness()
E.g. var percent = viewONE.getBrighness();

Returns the current brightness percentage setting (0-100).

47

Method:

Method:

Method:

setContrast(percent)

E.g. viewONE.setContrast(40);

This method sets the contrast of the image displayed. The value represents a
percentage from 0-100, with 50 being the default value. 0 = minimum contrast (flat)
and 100 = maximum brightness (not flat!).

If the document is closed when this method is called, the default for all pages is

modified. If the document is open when this method is called, the individual page is
modified only.

resetContrast()

E.g. viewONE.resetContrast ();

This method resets the contrast level to 50% (the default value).

If the document is closed when this method is called, the default for all pages is

modified. If the document is open when this method is called, the individual page is
modified only.

getContrast()
E.g. var percent = viewONE.getContrast();

Returns the current contrast percentage setting (0-100).

48

Method:

Method:

Method:

setLuminance(percent)

E.g. viewONE.setLuminance(70);

This method sets the luminance of the image displayed. The value represents a
percentage from 0-100, with 50 being the default value. 0 = minimum luminance
(dull) and 100 = maximum brightness (bright).

If the document is closed when this method is called, the default for all pages is
modified. If the document is open when this method is called, the individual page is
modified only.

Brightness increases the brightness of all colors (dark and light) uniformly,
whereas luminance causes already bright areas of the image to increase in
brightness further and darker areas to increase in brightness also, but by a lesser

amount. This simulates a light source shining on the image and can be more
effective at making color images clearer to read.

resetLuminance()

E.g. viewONE.resetLuminance();

This method resets the luminance level to 50% (the default value).

If the document is closed when this method is called, the default for all pages is

modified. If the document is open when this method is called, the individual page is
modified only.

getLuminance()
E.g. var percent = viewONE.getLuminance();

Returns the current lumance percentage setting (0-100).

49

Method:

Method:

Method:

Method:

getCacheFile()

E.g. var file = viewONE.getGetCacheFile();

Returns a String value representing the local filename of the displayed image.

If the file was loaded locally then this value will be the actual local image file. If the
file was loaded from a web server then this value will be the local ‘cached’ version
of the image file.

*Important: This file must not be locked during read operations (or deleted,

renamed. moved etc), as the applet will not be able to continue to use it and
unpredictable results may occur.

getimageWidth()
E.g. var width = viewONE.getimageWidth();

Returns an integer value representing the width of the currently displayed image in
image pixels.

getimageHeight()
E.g. var height = viewONE.getimageHeight();

Returns an integer value representing the height of the currently displayed image
in image pixels.

getXResolution()
E.g. var xRes = viewONE.getXResolution();

Returns an integer value representing the x-axis resolution of the currently
displayed image in dots per inch.

The value is obtained from the image’s header information, so if the information is
missing or corrupt the returned value will make no sense.

Method:

Method:

Method:

getYResolution()
E.g. var yRes = viewONE.getYResolution();

Returns an integer value representing the y-axis resolution of the currently
displayed image in dots per image.

The value is obtained from the image’s header information, so if the information is
missing or corrupt the returned value will make no sense.

getVersion()
E.g. var version = viewONE.getVersion();

Returns a String value representing the product version.

isReady()
E.g. var ready = viewONE.isReady();

Returns true if the applet as completed initialization. If JavaScript is used to open a
document during HTML page initialization then this method is useful in determining
when viewONE has fully initialized (prior to opening the document).

Browsers normally initialize Applets in parallel to HTML initialization and so it may
be necessary to use this method to synchronize calls to viewONE. Also, viewONE
itself runs thru an initialization phase in parallel to the loading of a web page.

Note on “object not found” message...

If you receive an “object not found” message while making this (or any
JavaScript calls) then it is because the applet has not been started by the
browser (viewONE has not even had a chance to perform it's own
initialization). This message is produced by the browser (not the applet).

The solution is to add some JS code to the call of isReady() which handles
object not found (or any use of JavaScript with viewONE), as follows...

51

var appletReady = false;
var doc = parent.frames.main.document; //(or Jjust 'document' if

it's not in a frame)

if (doc.viewONE)

{
appletReady = doc.viewONE.isReady () ;

if (appletReady)
{
//do something

The “if (doc.viewONE)” line will result in false if the applet has yet to be started.

If you still have problems then you may want to make use of the “OnError”
JavaScript statement that allows you to set up your own error handler. Your error
handler will then be called when a JavaScript problem is encountered such as
above. E.g..

onerror = errorHandler;
//you code to do whatever you need to do.. then..

function errorHandler ()

{
//if we get here it is probably because a call has been made
//to the applet before the browser has had time to initialize it
//1it can therefore be ignored

}

52

Method:

Method:

Method:

Method:

setTimeout(seconds)

E.g. var ready = viewONE.setTimeout(30);

This method sets and starts a usage timer. If the user does not use the applet for
the number of seconds specified then the applet will automatically be disabled. It
can be re-enabled by calling one of the timeout JavaScript methods (see below),

opening a document using one of the JavaScript open methods, by revisiting the
page containing the applet (Netscape) or reloading the page (Internet Explorer).

getTimeout()
E.g. var seconds = viewONE.getTimeout();

This method returns the timeout value (integer seconds) set using either the
setTimeout() method or the HTML tag “timeout”.

stopTimeout()
E.g. viewONE.stopTimeout();
This method will disable the timer set using either the setTimeout() method or the

HTML tag “timeout” and if the applet had timed-out then it will wake-up (i.e. be re-
enabled).

isTimedOut()
E.g. var timedout = viewONE.isTimedOut();
This method returns a value of true if the applet has timed-out as a result of the

user not using the applet for the time specified by the setTimeout() method or the
HTML tag “timeout”. It otherwise returns false.

53

Method:

Method:

Method:

getTimeleft()

E.g. var timeleft = viewONE.getTimeLeft();

This method returns the time in seconds left before the applet times-out. but only if
the setTimeout() method or HTML tag “timeout” has been used to set the time in

the first place. It otherwise returns 0. The time left is automatically reset each time
the user performs any action, such as scrolling, changing pages, zooming etc.

wakeUp()
E.g. viewONE.wakeUp();

This method will wake-up the applet if it has timed out (see setTimeout()). The
user will then be able to use the applet as normal.

getSelection()
E.g. selection = viewONE.getSelection();

This method returns a comma-delimited string containing any pages selected by
the user.

Event Handling

EventHandler

viewONE introduces the concept of applet JavaScript event handling. This is a mechanism by
which it is possible to use JavaScript to monitor user activity and other selected actions
performed by the viewONE applet.

This can be a powerful facility, for example, it allows user activity and usage to be logged
and/or actions to be performed dependent on what the user is doing/has done (e.g. charge for
specific services like printing, perform actions on double-clicks, monitor documents opened
etc).

The event handling is first enabled by the use of the HTML tag “eventHandler” and the
MayScript tag (see note below). The eventHandler tag must be set to the name of a JavaScript
function conforming to the following specification.

When the applet is initialized, it will call this function, passing it parameters relevant to the
action performed as described below.

The JavaScript ‘event handler must be specified with two parameters; id (integer) and text
(String), but can be any name of your choice, as follows...

Function myEventHandler(id, text)

{

alert(“Event received, id="+id+", text="+text);

}

In this example, the event handler just displays a notice to the user that an event had been
received. You are however free to do whatever you need, for example testing the value of the
id and text fields then taking further actions as necessary.

The following list describes the events that will be received by this function (over page)...and
the next page after provides a full example.

Events received by the JavaScript event handler:

Id Text Description
0 test Ignore this event. It is used when calling the isEventHandlerOK()
method (see below).
1 - Reserved.
2 - Reserved.
3 printpage: page nof n User has printed a page
4 printvisible: page n of n User has printed the visible part of a page
5 opened: url User has opened a document
6 saved: page nof n User has saved a page
7 click: page nof n User has clicked on a page
8 dblclick: page nof n User has double-clicked on a page
9 page: page nof n User has changed page

10 timeout: page nof n Indicates the applet has timed-out. See JavaScript method setTimeout()
and HTML tag “timeout”

11 - Reserved.

12 select page: page nof n User has selected a page

13 unselect page: page nof n User has unselected a page

14 mouse down: page nof n User has pressed a mouse button

15 mouse up: page nof n User has released a mouse button

16-19 - Reserved

20 set document: doc nof n User has selected the next document in the list (this applies only when
the “doc<N>" HTML tag is used — see HTML manual)

21 end tab The user has used the tab key to change focus while the last focusable
component in viewONE already had focus. viewONE will assign focus
back to the first in its list, however you may override viewONE by using
this event to switch focus to any alternative component on your web
page.

22 ready The applet has just been started and is ready to accept JavaScript calls.

23 annotation hyperlink The user has activated an annotation (JavaScript) hyperlink (see
annotations configuration manual).

24 annotations save ok Annotations have just been saved.

25 annotations save failed The annotations save operation has just failed.

26 print cancelled A print dialog or print job has been cancelled.

Id Text Description

27 print ended A print job has been successfully sent to the printer.

28 - Reserved.

29 - Reserved.

30 annotation created The user has added an annotation through the user interface.
31 SaveDocument Failed(n) This event can fire with two different n values...

-if nis 1, it means that viewONE could not create the save files in its
own cache (prior to sending them to the destination). One way this
might happen is if the disk was full.

- if nis 2, it means that viewONE could not copy the saves files to the
specified destination.

57

HTML and JavaScript example:

<html>

<head>

<title>viewONE Event Handler Demo</title>

</head>

<body bgcolor="#C0COCO" text="#000000" topmargin="0"
leftmargin="0">

<script LANGUAGE="JavaScript">
<!--

function myhandler (id, text)
{

alert(id + ", " + text);
}

//==>
</script>

<applet CODEBASE="../vlfiles"
ARCHIVE="7ji.jar"
CODE="7i/applet/JjiApplet.class"
NAME="viewONE"

ID="viewONE"

WIDTH="100%"

HEIGHT="97%"

HSPACE="0"

VSPACE="0"

ALIGN="middle"
MAYSCRIPT="true">

<param name="cabbase" value="ji.cab">

<param name="eventhandler" value="myhandler">
<param name="backcolor" value="192,192,192">
<param name="filename" value="mydocument.tif">

</applet>
</body>
</html>

Testing your Event Handler

There may be cases where ‘LiveConnect’ is not implemented (older browsers or some
browser implementations on non-MS Windows platforms) which will mean JavaScript cannot
call applet methods and the event handler functionality will not work. In all other cases the
following methods may help in debugging potential event handler problems...

You need to make sure the MayScript and eventHandler tags are specified. If you have made
a mistake with either then the following methods will help indicate where the problem lies...

isEventHandlerOK()
getEventHandlerError()
And can be used as follows...

If (Idocument.viewONE.isEventHandlerOK())
{

alert(document.viewONE.getEventHandlerError());

}

If you receive an error message when the applet attempts to call your event handler, then
assuming LiveConnect is enabled, the most likely cause is that the incorrect name for your
event handler was supply to viewONE. Note that JavaScript function names are case
sensitive.

The MayScript tag

The MayScript tag is required if any applet is to call JavaScript methods. This tag was
introduced by Netscape and is also implemented in Internet Explorer. We have however
noticed that the use of this tag can reduce start-up performance for Netscape because it
appears to force all applets to be recompiled with each invocation.

If you wish to use the event handling capability however it is a requirement and so the
reduced startup performance is an unavoidable side effect. We recommend therefore that
eventHandling is used only if necessary.

Applet security

viewONE classes are supplied in a Jar (Java Archive) and Cab (Cabinet) file.
Microsoft Explorer requires the Cab file and most all other browsers require the Jar file.

Both files contain a digital certificate (i.e. they are “signed”). A certificate is required to permit
viewONE to use local disk for caching, printing and local file open and save operations.

If the Applet is run using Microsoft Explorer then the user will be provided with an opportunity to
accept this certificate when the Applet is started. If the user rejects it then the Applet will stop
running.

If the Applet is run using Netscape, then the user will be provided an opportunity to ‘give’ each
privilege to the applet as it is required. On each occasion, the certificate will be displayed. The
first instance will involve file access so that caching may operate. Further prompts will be
provided when the user initiates a print operation. If the user rejects any request then the applet
will continue to run but will not be able to perform disk caching or printing (which ever is
rejected).

Both browsers allow the users’ choice to be remembered’ so that successive uses of the
applet will not involve having to re-accept the certificate or privileges.

The Java Plugin

The use of the Java Plugin for any applet in a HTML page differs between browsers.

Internet Explorer uses the Object tag and applet parameters are specified using the “param”
tag as follows...

<object classid=“clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
width="100%" height=%"98%" align="middle” NAME=“viewONE”
codebase="http://Jjava.sun.com/products/plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0">
<param name=“type” value=“application/x-Jjava-applet;version=1.2">
<param name=“archive” value=%“ji.jar”>
<param name=“code” value=“ji.applet.jiApplet”>

<param name="“codebase” value="“.">
<param name=“filename” value=“myimage.tif”>
</object>

The classid is Microsoft's number for the plugin and it the same for all applets. The first
“codebase” parameter specifies the location of the plugin if the user does not have it already
installed. The “type” tag indicates that the plugin is being used with an applet as opposed to a
bean.

The remaining parameters “archive, code, codebase, filename” are the usual Applet tags as
already documented. Any of the viewONE-supported tags can be added in the same way.

Netscape used the Embed tag and applet parameters are specified directly using the
parameter name as follows. ..

<embed width="98%" height=%"100%" align="middle” name=“viewONE”
pluginspage=“http://java.sun.com/products/plugin/l.2/plugin-install.html”
type=“application/x-java-applet;version=1.2"
archive=%“ji.jar”
codebase="./"
code="ji.applet.jiApplet.class”
filename="myimage.tif”>

</embed>

The “pluginspage” specifies the location of the plugin if the user does not have it already
installed, and the “type” tag indicates that the plugin is being used with an applet as opposed to
a bean. The remaining parameters are the usual Applet tags as already documented but
without the prefix “param name”.

61

